Source code for seismic.correlate.stream

'''
Manage objects holding correlations.

:copyright:
    The SeisMIC development team (makus@gfz-potsdam.de).
:license:
    EUROPEAN UNION PUBLIC LICENCE v. 1.2
   (https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12)
:author:
   Peter Makus (makus@gfz-potsdam.de)

Created: Tuesday, 20th April 2021 04:19:35 pm
Last Modified: Wednesday, 19th June 2024 04:06:21 pm
'''
from typing import Iterator, List, Tuple, Optional
from copy import deepcopy
import warnings
from matplotlib import pyplot as plt
import datetime


import numpy as np
import numpy.typing as npt
from obspy import Stream, Trace, Inventory, UTCDateTime
from obspy.core import Stats

from seismic.utils import miic_utils as m3ut
from seismic.plot.plot_correlation import plot_cst, plot_ctr, plot_corr_bulk
import seismic.monitor.post_corr_process as pcp
from seismic.monitor.stretch_mod import wfc_multi_reftr
from seismic.monitor.dv import DV
from seismic.monitor.wfc import WFC
from seismic.correlate.stats import CorrStats
from seismic.monitor.trim import corr_mat_trim


[docs]class CorrBulk(object): """ An object for faster computations on several correlations. The input correlation contain data from only one Station-Channel pair. """ def __init__( self, A: np.ndarray, stats: CorrStats = None, statlist: List[CorrStats] = None): """ An object for faster computations on several correlations. The input correlation contain data from only one Station-Channel pair. :param A: the Correlation Matrix. Each line corresponds to one correlation start. The column distance is lag time :type A: np.ndarray :param stats: CorrStats file holding the header for this object, only relevant if you are reloading this file. Otherwise, use statlist as input to create this header. defaults to None :type stats: CorrStats, optional :param statlist: Header of each CorrTrace used to create this object, defaults to None :type statlist: List[CorrStats], optional """ self.data = A if stats: self.stats = stats elif statlist: self.stats = convert_statlist_to_bulk_stats(statlist) else: self.stats = CorrStats() self.stats['ntrcs'], self.stats['npts'] = A.shape self.stats['processing_bulk'] = [] self.ref_trc = None def __getitem__(self, item): list_keys = ['corr_start', 'corr_end', 'location', 'channel'] stats_out = deepcopy(self.stats) if isinstance(item, int): for key in list_keys: value = stats_out[key] if isinstance(value, list) or isinstance(value, np.ndarray): stats_out[key] = value[item] del stats_out['processing_bulk'] del stats_out['ntrcs'] return CorrTrace(self.data[item], _header=stats_out) for key in list_keys: value = stats_out[key] if isinstance(value, list): stats_out[key] = np.array(value)[item].tolist() elif isinstance(value, np.ndarray): stats_out[key] = value[item] cb_out = CorrBulk(self.data[item], stats=stats_out) cb_out.stats['ntrcs'] = cb_out.data.shape[0] return cb_out
[docs] def plot(self, **kwargs): """ Plot the correlation traces contained. .. seealso:: See :func:`~seismic.plot.plot_correlation.plot_corr_bulk` for accepted parameters. """ ax = plot_corr_bulk(self, **kwargs) return ax
[docs] def normalize( self, starttime: float = None, endtime: float = None, normtype: str = 'energy'): """ Correct amplitude variations with time. Measure the maximum of the absolute value of the correlation matrix in a specified lapse time window and normalize the correlation traces by this values. A coherent phase in the respective lapse time window will have constant ampitude afterwards.. :type starttime: float :param starttime: Beginning of time window in seconds with respect to the zero position. :type endtime: float :param endtime: end time window in seconds with respect to the zero position. :type normtype: string :param normtype: one of the following 'energy', 'max', 'absmax', 'abssum' to decide about the way to calculate the normalization. :rtype: CorrBulk :return: Same object as in self, but normalised. ..note:: This action is performed **in-place**. If you would like to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()`. """ self.data = pcp.corr_mat_normalize( self.data, self.stats, starttime, endtime, normtype) proc_str = f'normalize; normtype: {normtype}' if starttime is not None and endtime is not None: proc_str += f', starttime: {starttime}, endtime: {endtime}' self.stats.processing_bulk += [proc_str] return self
[docs] def clip(self, thres: float, axis=1): """ Clip the correlation data's upper and lower bounds to a multiple of its standard deviation. `thres` determines the factor and `axis` the axis the std should be computed over :param thres: factor of the standard deviation to clip by :type thres: float :param axis: Axis to compute the std over and, subsequently clip over. Can be None, if you wish to compute floating point rather than a vector. Then, the array will be clipped evenly. :type axis: int ..note:: This action is performed **in-place**. If you would like to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()`. """ self.data = pcp.corr_mat_clip(self.data, thres, axis) proc_str = f'Clipped; threshold: {thres}*std, axis={axis}' self.stats.processing_bulk += [proc_str] return self
[docs] def copy(self): """ Returns a copy of self :return: A copy of self """ return deepcopy(self)
[docs] def correct_decay(self): """ Correct for the amplitude decay in a correlation matrix. Due to attenuation and geometrical spreading the amplitude of the correlations decays with increasing lapse time. This decay is corrected by dividing the correlation functions by an exponential function that models the decay. :return: Self but with data corrected for amplitude decay ..note:: This action is performed **in-place**. If you would like to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()`. """ self.data = pcp.corr_mat_correct_decay(self.data, self.stats) self.stats.processing_bulk += ['Corrected for Amplitude Decay'] return self
[docs] def correct_stretch(self, dv: DV): """ Correct stretching of correlation matrix In the case of a homogeneous subsurface velocity change the correlation traces are stretched or compressed. This stretching can be measured with `self.stretch`. The resulting `DV` object can be passed to this function to remove the stretching from the correlation matrix. :param dv: Velocity Change object :type dv: DV ..note:: This action is performed **in-place**. If you would like to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()`. """ if dv.value_type != 'stretch': raise ValueError('DV object does not hold any stretch values.') self.data, self.stats = pcp.apply_stretch( self.data, self.stats, -1.*dv.value) self.stats.processing_bulk += ['Applied time stretch'] return self
[docs] def correct_shift(self, dt: DV): """ Correct a shift of the traces. If time shifts in the (correlation) traces occur due to clock drifts or time offsets in active measurements these can be measured with :func:`~seismic.correlate.stream.CorrelationBulk.measure_shift`. If the resulting time shift is passed to this function the shift is corrected for, such that if the measurement is done again no shift will be detected. """ self.data = pcp.apply_shift( data=self.data, stats=self.stats, shifts=-1.*dt.value) self.stats.processing_bulk += ['Corrected for time shift'] return self
[docs] def create_corr_stream(self, ind: List[int] = None): """ Creates a :class:`~seismic.correlate.stream.CorrStream` object from the current :class:`~seismic.correlate.stream.CorrBulk` object. This can be useful if you want to save your postprocessed data in a hdf5 file again. :param ind: Indices to extract. If None, all will be used. Defaults to None. :type ind: Iterable[ind], optional :return: Correlation Stream holding the same data :rtype: :class:`~seismic.correlate.stream.CorrStream` """ cst = CorrStream() mutables = ['corr_start', 'corr_end', 'location', 'channel'] if ind is None: for ii, li in enumerate(self.data): stats = deepcopy(self.stats) for k in mutables: if not isinstance(stats[k], list): continue stats[k] = self.stats[k][ii] ctr = CorrTrace(li, _header=stats) cst.append(ctr) else: for ii in ind: stats = deepcopy(self.stats) for k in mutables: if not isinstance(stats[k], list): continue stats[k] = self.stats[k][ii] ctr = CorrTrace(self.data[ii], _header=stats) cst.append(ctr) return cst
[docs] def envelope(self): """ Calculate the envelope of a correlation matrix. The correlation data of the correlation matrix are replaced by their Hilbert envelopes. :return: self with the envelope in data ..note:: This action is performed **in-place**. If you would like to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()`. """ self.data = pcp.corr_mat_envelope(self.data) self.stats.processing_bulk += ['Computed Envelope'] return self
[docs] def filter(self, freqs: Tuple[float, float], order: int = 3): """ Filters the correlation matrix in the frequency band specified in freqs using a zero phase filter of twice the order given in order. :type freqs: Tuple :param freqs: lower and upper limits of the pass band in Hertz :type order: int :param order: half the order of the Butterworth filter :return: self ..note:: This action is performed **in-place**. If you would like to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()`. """ self.data = pcp.corr_mat_filter(self.data, self.stats, freqs, order) proc = [f'filter; freqs: {freqs}, order: {order}'] self.stats.processing_bulk += proc return self
[docs] def extract_trace( self, method: str = 'mean', percentile: float = 50.) -> np.ndarray: """ Extract a representative trace from a correlation matrix. Extract a correlation trace from the that best represents the correlation matrix. ``Method`` decides about method to extract the trace. The following possibilities are available * ``mean`` averages all traces in the matrix * ``median`` takes the median of all traces in the matrix * ``norm_mean`` averages the traces normalized after normalizing for maxima * ``similarity_percentile`` averages the ``percentile`` % of traces that best correlate with the mean of all traces. This will exclude abnormal traces. ``percentile`` = 50 will return an average of traces with correlation (with mean trace) above the median. :type method: string :param method: method to extract the trace :type percentile: float :param percentile: only used for method=='similarity_percentile' :rtype: np.ndarray :return: extracted trace ..note:: the extracted trace will also be saved in self.ref_trc """ outdata = pcp.corr_mat_extract_trace( self.data, self.stats, method, percentile) self.ref_trc = outdata return outdata
[docs] def extract_multi_trace( self, win_inc: int or List[int], method: str = 'mean', percentile: float = 50.) -> List[np.ndarray]: """ Extract several representative traces from a correlation matrix. (one per time window `win_inc` with the length = 2*win_inc). That is, the reference will be extracted with half increment overlap in each direction. Extract a correlation trace from the one that best represents the correlation matrix. ``Method`` decides about method to extract the trace. The following possibilities are available * ``mean`` averages all traces in the matrix * ``median`` extract the median of all traces in the matrix * ``norm_mean`` averages the traces normalized after normalizing for maxima * ``similarity_percentile`` averages the ``percentile`` % of traces that best correlate with the mean of all traces. This will exclude abnormal traces. ``percentile`` = 50 will return an average of traces with correlation (with mean trace) above the median. :param win_inc: Increment between each window that a Trace should be extracted from. Given in days. Can be a list/np.ndarray or an int (constant increment). The windows' length will be twice the increment. **If set to 0, only one trace for the whole time will be used.** :type win_inc: int or List[int] (number of days) :type method: string :param method: method to extract the trace :type percentile: float :param percentile: only used for method=='similarity_percentile' :rtype: np.ndarray :return: extracted trace ..note:: the extracted traces will also be saved in self.ref_trc """ ref_trcs = [] if isinstance(win_inc, list): win_inc = np.array(win_inc) elif win_inc == 0: return self.extract_trace(method, percentile) inc_s = win_inc*24*3600 start = min(self.stats.corr_start) if isinstance(inc_s, np.ndarray): for inc in inc_s: end = start + inc ii = self._find_slice_index(start-inc/2, end+inc/2, True) start = start + inc ref_trcs.append(pcp.corr_mat_extract_trace( self.data[ii, :], self.stats, method, percentile)) else: while start < max(self.stats.corr_end): end = start + inc_s ii = self._find_slice_index(start-inc_s/2, end+inc_s/2, True) start = end # stats don't need to be altered for this function ref_trcs.append(pcp.corr_mat_extract_trace( self.data[ii, :], self.stats, method, percentile)) ref_trcs = np.array(ref_trcs) self.ref_trc = ref_trcs return ref_trcs
[docs] def find_clock_shift( self, ref_trc: np.ndarray = None, tw: List[np.ndarray] = None, shift_range: int = 10, shift_steps: int = 101, sides: str = 'both', return_sim_mat: bool = False) -> DV: """ Compute the shift of correlations as they can occur due to a clock drift. :param ref_trc: Reference trace to use for the computation, defaults to None. Will extract a single trace if = None. :type ref_trc: np.ndarray, optional :param tw: Lapse Time window to use for the computation, defaults to None :type tw: List[np.ndarray], optional :param shift_range: Maximum shift value to test (in n samples not seconds!). Defaults to 10. :type shift_range: int, optional :param shift_steps: Number of shift steps, defaults to 101 :type shift_steps: int, optional :param sides: Which sides to use. Can be 'right', or 'both'. Defaults to 'both' :type sides: str, optional :param return_sim_mat: Return the similarity matrix, defaults to False :type return_sim_mat: bool, optional :return: The shift as :class:`~seismic.monitor.dv.DV` object. :rtype: DV """ warnings.warn( 'This function is deprecated. Use measure_shift instead.', DeprecationWarning) if ref_trc is None: ref_trc = self.ref_trc dv_dict = pcp.corr_mat_shift( self.data, self.stats, ref_trc, tw, shift_range, shift_steps, sides, return_sim_mat) if not return_sim_mat: dv_dict['sim_mat'] = np.array([]) return DV(**dv_dict)
[docs] def measure_shift( self, ref_trc: Optional[np.ndarray] = None, tw: Optional[List[Tuple[float, float]]] = None, shift_range: float = 10, shift_steps: int = 101, sides: str = 'both', return_sim_mat: bool = False) -> DV: """ Time shift estimate through shifting and comparison. This function estimates shifting of the time axis of traces as it can occur if the clocks of digitizers drift. Time shifts are estimated comparing each trace (e.g. correlation function stored in the ``corr_data`` matrix (one for each row) with shifted versions of reference trace stored in ``ref_trc``. The range of shifting to be tested is given in ``shift_range`` in seconds. It is used in a symmetric way from -``shift_range`` to +``shift_range``. Shifting ist tested ``shift_steps`` times. ``shift_steps`` should be an odd number to test zero shifting. The best match (shifting amount and corresponding correlation value) is calculated in specified time windows. Multiple time windows may be specified in ``tw``. :param ref_trc: Refernce trace for the shifting, defaults to None :type ref_trc: Optional[np.ndarray], optional :param tw: Time window(s) to check the shifting in, defaults to None. :type tw: Optional[List[float]], optional :param shift_range: Maximum shift range in seconds, defaults to 10 :type shift_range: float, optional :param shift_steps: Number of shift steps, defaults to 101 :type shift_steps: int, optional :type sides: str :param sides: Side of the traces to be used for the shifting estimate ('both' | 'single'). ``single`` is used for one-sided signals from active sources or if the time window shall not be symmetric. For ``both`` the time window will be mirrowd about zero lag time, e.g. [start,end] will result in time windows [-end:-start] and [start:end] being used simultaneousy :param return_sim_mat: Return simmilarity matrix?, defaults to False :type return_sim_mat: bool, optional :return: A DV object holding a shift value. :rtype: DV """ dt = pcp.measure_shift( self.data, self.stats, ref_trc=ref_trc, tw=tw, shift_range=shift_range, shift_steps=shift_steps, sides=sides, return_sim_mat=return_sim_mat) return dt
[docs] def mirror(self): """ Average the causal and acausal (i.e., right and left) parts of the correlation. ..note:: This action is performed **in-place**. If you would like to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()`. """ self.data, self.stats = pcp.corr_mat_mirror(self.data, self.stats) self.stats.processing_bulk += ['Mirrored.'] return self
[docs] def resample( self, starttimes: List[UTCDateTime], endtimes: List[UTCDateTime] = []): """ Function to create correlation matrices with constant sampling When created from a CorrStream the correlation matrix contains all available correlation traces but homogeneous sampling is not guaranteed as correlation functions may be missing due to data gaps. This function restructures the correlation matrix by inserting or averaging correlation functions to provide temporally homogeneous sampling. Inserted correlation functions consist of 'nan' if gaps are present and averaging is done if more than one correlation function falls in a bin between start_times[i] and end_times[i]. If end_time is an empty list (default) end_times[i] is set to start_times[i] + (start_times[1] - start_times[0]) :type start_times: list of class:`~obspy.core.UTCDateTime` objects :param start_times: list of starting times for the bins of the new sampling :type end_times: list of class:`~obspy.core.UTCDateTime` objects :param end_times: list of end times for the bins of the new sampling ..note:: This action is performed **in-place**. If you want to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()` """ self.data, self.stats = pcp.corr_mat_resample( self.data, self.stats, starttimes, endtimes) self.stats.processing_bulk += [ f'Resampled. Starttimes: {starttimes}, Endtimes: {endtimes}'] return self
[docs] def resample_time_axis(self, freq: float): """ Resample the lapse time axis of a correlation matrix. The correlations are automatically filtered with a highpass filter of 0.4*sampling frequency to avoid aliasing. The function decides automatically whether to decimate or resample depending on the desired frequency :param freq: new sampling frequency :type freq: float ..note:: This action is performed **in-place**. If you want to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()` """ self.data, self.stats = pcp.corr_mat_resample_or_decimate( self.data, self.stats, freq) self.stats.processing_bulk += [ f'Resampled time axis. New sampling rate: {freq}Hz'] return self
[docs] def smooth( self, wsize: int, wtype: str = 'flat', axis: int = 1) -> np.ndarray: """ Smoothes the correlation matrix with a given window function of the given width along the given axis. This method is based on the convolution of a scaled window with the signal. Each row/col (i.e. depending on the selected ``axis``) is "prepared" by introducing reflected copies of it (with the window size) in both ends so that transient parts are minimized in the beginning and end part of the resulting array. :type wsize: int :param wsize: Window size :type wtype: string :param wtype: Window type. It can be one of: ['flat', 'hanning', 'hamming', 'bartlett', 'blackman'] defaults to 'flat' :type axis: int :param axis: Axis along with apply the filter. O: smooth along correlation lag time axis 1: smooth along time axis :rtype: :class:`~numpy.ndarray` :return: Filtered matrix ..note:: This action is performed **in-place**. If you want to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()` """ self.data = pcp.corr_mat_smooth(self.data, wsize, wtype, axis) self.stats.processing_bulk += [ f'Smoothed. wsize: {wsize}, wtype: {wtype}, axis: {axis}'] return self
[docs] def stretch( self, ref_trc: np.ndarray = None, tw: List[np.ndarray] = None, stretch_range: float = 0.1, stretch_steps: int = 101, sides: str = 'both', return_sim_mat: bool = False, ref_tr_trim: Optional[Tuple[float, float]] = None, ref_tr_stats=None, processing: Optional[dict] = None) -> DV: """ Compute the velocity change with the stretching method (see Sens-Schönfelder and Wegler, 2006). :param ref_trc: Reference trace(s) to use for the computatio, defaults to None. Will extract a single trace if = None. :type ref_trc: np.ndarray, optional :param tw: Lapse Time window to use for the computation, defaults to None :type tw: List[np.ndarray], optional :param stretch_range: Maximum stretch value to test, defaults to 0.1 :type stretch_range: float, optional :param stretch_steps: Number of stretch steps, defaults to 101 :type stretch_steps: int, optional :param sides: Which sides to use. Can be 'left', 'right' (or 'single'), or 'both'. Defaults to 'both' :type sides: str, optional :param return_sim_mat: Return the similarity matrix, defaults to False :type return_sim_mat: bool, optional :param processing: dictionary holding processing information. :type processing: dict :return: The velocity change as :class:`~seismic.monitor.dv.DV` object. :rtype: DV """ if ref_trc is None: ref_trc = self.ref_trc dv_dict = pcp.corr_mat_stretch( self.data, self.stats, ref_trc, tw, stretch_range, stretch_steps, sides, return_sim_mat, ref_tr_trim, ref_tr_stats) if not return_sim_mat: dv_dict['sim_mat'] = np.array([]) return DV(**dv_dict, dv_processing=processing)
[docs] def save(self, path: str): """ Save the object to a numpy binary format (**.npz**) :param path: Output path :type path: str """ kwargs = m3ut.save_header_to_np_array(self.stats) np.savez_compressed( path, data=self.data, **kwargs)
[docs] def select_corr_time( self, starttime: UTCDateTime, endtime: UTCDateTime, include_partially_selected: bool = True): """ Selects correlations that are inside of the requested time window. refer to CorrStream.select_corr_time for details """ cst = self.create_corr_stream() scst = cst.select_corr_time( starttime=starttime, endtime=endtime, include_partially_selected=include_partially_selected) return scst.create_corr_bulk()
[docs] def slice( self, starttime: UTCDateTime, endtime: UTCDateTime, include_partial: bool = True): """ return a subset of the current CorrelationBulk with data inside the requested time window. :param starttime: Earliest Starttime :type starttime: UTCDateTime :param endtime: Latest endtime :type endtime: UTCDateTime :param include_partial: Include time window if it's only partially covered, defaults to True :type include_partial: bool, optional :return: Another CorrBulk object :rtype: CorrBulk """ ii = self._find_slice_index(starttime, endtime, include_partial) data = self.data[ii, :] stats = deepcopy(self.stats) for key, value in stats.items(): try: if isinstance(value, list) and key != 'processing_bulk': stats[key] = [v for jj, v in zip(ii, value) if jj] elif isinstance(value, np.ndarray): stats[key] = value[ii] except AttributeError: continue # Those will change automatically return CorrBulk(data, stats)
[docs] def taper(self, width: float): """ Taper the data. :param width: width to be tapered in seconds (per side) :type width: float ..note:: This action is performed **in-place**. If you want to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()` """ self.data = pcp.corr_mat_taper(self.data, self.stats, width) proc = [f'tapered: width={width}s'] self.stats.processing_bulk += proc return self
[docs] def taper_center(self, width: float, slope_frac: float = 0.05): """ Taper the central part of a correlation matrix. Due to electromagnetic cross-talk, signal processing or other effects the correlaton matrices are often contaminated around the zero lag time. This function tapers (multiples by zero) the central part of width `width`. To avoid problems with interpolation and filtering later on this is done with cosine taper. :param width: width of the central window to be tapered in seconds (**total length i.e., not per side**). :type width: float :param slope_frac: fraction of `width` used for soothing of edges, defaults to 0.05 :type slope_frac: float, optional :return: self :rtype: CorrBulk ..note:: This action is performed **in-place**. If you want to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()` """ self.data = pcp.corr_mat_taper_center( self.data, self.stats, width, slope_frac=slope_frac) proc = [f'tapered-centre: width={width}s, slope_frac={slope_frac}'] self.stats.processing_bulk += proc return self
[docs] def trim(self, starttime: float, endtime: float): """ Trim the correlation matrix to the period from `starttime` to `endtime` given in seconds from the zero position, so both can be positive and negative. :type starttime: float :param starttime: start time in seconds with respect to the zero position :type endtime: float :param order: end time in seconds with respect to the zero position :return: self ..note:: This action is performed **in-place**. If you want to keep the original data use :func:`~seismic.correlate.stream.CorrelationBulk.copy()` """ self.data, self.stats = corr_mat_trim( self.data, self.stats, starttime, endtime) proc = ['trim: %s, %s' % (str(starttime), str(endtime))] self.stats.processing_bulk += proc return self
[docs] def wfc( self, ref_trc: np.ndarray, time_window: np.ndarray, sides: str, tw_start: float, tw_len: float, freq_min: float, freq_max: float, remove_nans: bool = True) -> WFC: """ Computes the waveform coherency (**WFC**) between the given reference correlation(s) and correlation matrix. If several references are given, it will loop over these See Steinmann, et. al. (2021) for details. :param refcorr: 1 or 2D reference Correlation Trace extracted from the correlation data. If 2D, it will be interpreted as one refcorr trace per row. :type refcorr: np.ndarray :param tw: Lag time window to use for the computation :type tw: np.ndarray :param sides: Which sides to use. Can be `both`, `right`, `left`, or `single`. :type sides: str :param tw_start: Time window start in seconds lag time. :type tw_start: float :param tw_len: Length of the Lapse time window in seconds. :type tw_len: float :param freq_min: Highpass frequency used for the computed values. (Hz) :type freq_min: float :param freq_max: Lowpass frequency used for the computed values. (Hz) :type freq_max: float :param remove_nans: Remove nans from CorrMatrix, defaults to True :return: A dictionary with one correlation array for each reference trace. The keys are using the syntax `reftr_%n`. :rtype: dict """ wfc_dict = wfc_multi_reftr( self.data, ref_trc, time_window, sides, remove_nans) wfc_processing = { 'tw_start': tw_start, 'tw_len': tw_len, 'freq_min': freq_min, 'freq_max': freq_max } wfc = WFC(wfc_dict, self.stats, wfc_processing) return wfc
def _find_slice_index( self, starttime: UTCDateTime, endtime: UTCDateTime, include_partial: bool) -> np.ndarray: """ Find the indices of the correlations in the requested time window. :param starttime: start of the time window :type starttime: UTCDateTime :param endtime: end of the time window :type endtime: UTCDateTime :param include_partial: include corrs that are only partially covered :type include_partial: bool :return: An Array containing the boolean indices :rtype: np.ndarray[bool] """ if endtime <= starttime: raise ValueError('End has to be after start!') if include_partial: ii = np.logical_and( np.array(self.stats.corr_end) >= starttime, np.array(self.stats.corr_start) <= endtime) else: ii = np.logical_and( np.array(self.stats.corr_start) >= starttime, np.array(self.stats.corr_end) <= endtime) ii = np.squeeze(ii) if not len(np.nonzero(ii)[0]): warnings.warn( 'No slices found in the requested time. Returning empty arr.') return ii
[docs]def read_corr_bulk(path: str) -> CorrBulk: """ Reads a CorrBulk object from an **.npz** file. :param path: Path to file :type path: str :return: the corresponding and converted CorrBulk object :rtype: CorrBulk """ loaded = np.load(path) stats = m3ut.load_header_from_np_array(loaded) return CorrBulk(loaded['data'], stats=stats)
[docs]class CorrStream(Stream): """ Baseclass to hold correlation traces. Basically just a list of the correlation traces. """ def __init__(self, traces: list = None): self.traces = [] if isinstance(traces, CorrTrace): traces = [traces] if traces: for tr in traces: if not isinstance(tr, CorrTrace): raise TypeError( 'Traces have to be of type' ':class:`~seismic.correlate.correlate.CorrTrace`.') self.traces.append(tr) def __str__(self, extended=False) -> str: """ Return short summary string of the current stream. It will contain the number of Traces in the Stream and the return value of each Trace's :meth:`~obspy.core.trace.Trace.__str__` method. :type extended: bool, optional :param extended: This method will show only 20 traces by default. Enable this option to show all entries. .. rubric:: Example >>> stream = Stream([Trace(), Trace()]) >>> print(stream) # doctest: +ELLIPSIS 2 Trace(s) in Stream: ... """ # get longest id if self.traces: id_length = self and max(len(tr.id) for tr in self) or 0 else: id_length = 0 out = str(len(self.traces)) + ' Correlation(s) in Stream:\n' if len(self.traces) <= 20 or extended is True: out = out + "\n".join([_i.__str__(id_length) for _i in self]) else: out = out + "\n" + self.traces[0].__str__() + "\n" + \ '...\n(%i other correlations)\n...\n' % (len(self.traces) - 2)\ + self.traces[-1].__str__() + '\n\n[Use "print(' + \ 'Stream.__str__(extended=True))" to print all correlaitons]' return out
[docs] def create_corr_bulk( self, network: str = None, station: str = None, channel: str = None, location: str = None, times: Tuple[UTCDateTime, UTCDateTime] = None, inplace=True) -> CorrBulk: """ Creates a CorrelationBulk object, which offers additional options for faster postprocessing. :param network: Select only this network, defaults to None :type network: str, optional :param station: Take data from this station, defaults to None :type station: str, optional :param channel: Take data from this channel. If None all channels will be retained, defaults to None :type channel: str, optional :param location: Take data from only this location. Else various locations can be processed together, defaults to None :type location: str, optional :param times: Only take data from this time window, defaults to None :type times: Tuple[UTCDateTime, UTCDateTime], optional :param inplace: The original data will be deleted to save memory, defaults to True. :type inplace: bool, optional :return: The CorrelationBulk object :rtype: CorrBulk .. note:: This function will check whether the metadata of the input stream is identical, so that correlations from different stations, components, or differently processed data cannot be mixed. """ st = self.select(network, station, location, channel) if times: st = st.select_corr_time(times[0], times[1]) if not st.count(): raise ValueError( f'CorrStream contains no data between {times[0]} and ' f'{times[1]}.') A = np.empty((st.count(), st[0].stats.npts)) statlist = [] # Double check sampling rate sr = st[0].stats.sampling_rate mask = [] for ii, tr in enumerate(st): if tr.stats.sampling_rate != sr: warnings.warn('Sampling rate differs. Trace is skipped.') mask.append(ii) continue A[ii] = tr.data if inplace: del tr.data statlist.append(tr.stats) # Apply mask for skipped data A = np.delete(A, mask, 0) if channel is None or '*' in channel or '?' in channel: stats = convert_statlist_to_bulk_stats( statlist, varying_channel=True, varying_loc=False) else: stats = convert_statlist_to_bulk_stats( statlist, varying_loc=False) return CorrBulk(A, stats)
[docs] def plot( self, sort_by: str = 'corr_start', timelimits: Tuple[float, float] = None, ylimits: Tuple[float, float] = None, scalingfactor: float = None, ax: plt.Axes = None, linewidth: float = 0.25, outputfile: str = None, title: str = None, type: str = 'heatmap', cmap: str = 'inferno', vmin: float = None, vmax: float = None, **kwargs): """ Creates a section plot of all correlations in this stream. kwargs will be passed to :func:`~seismic.plot.plot_correlation.plot_cst` :param sort_by: Which parameter to plot against. Can be either ``corr_start`` or ``distance``, defaults to 'corr_start'. :type sort_by: str, optional :param timelimits: xlimits (lag time) in seconds, defaults to None :type timelimits: Tuple[float, float], optional :param ylimits: limits for Y-axis (either a :class:`datetime.datetime` or float in km (if plotted against distance)), defaults to None. :type ylimits: Tuple[float, float], optional :param scalingfactor: Which factor to scale the Correlations with. Play around with this if you want to make amplitudes bigger or smaller, defaults to None (automatically chosen). :type scalingfactor: float, optional :param ax: Plot in existing axes? Defaults to None :type ax: plt.Axes, optional :param linewidth: Width of the lines to plot, defaults to 0.25 :type linewidth: float, optional :param outputfile: Save the plot? defaults to None :type outputfile: str, optional :param title: Title of the plot, defaults to None :type title: str, optional :param type: Type of plot. Either `'heatmap'` for a heat plot or `'section'` for a wiggle type plot. Defaults to heatmap. :type title: str, optional :param cmap: Decides about colormap if type == 'heatmap'. Defaults to 'inferno'. :type cmap: str, optional .. note:: If you would like to plot a subset of this stream, use :func:`~seismic.correlate.stream.CorrStream.select`. """ if self.count() == 1: return self[0].plot(tlim=timelimits) ax = plot_cst( self, sort_by=sort_by, timelimits=timelimits, ylimits=ylimits, scalingfactor=scalingfactor, ax=ax, linewidth=linewidth, outputfile=outputfile, title=title, type=type, cmap=cmap, vmin=vmin, vmax=vmax, **kwargs) return ax
[docs] def pop_at_utcs(self, utcs: npt.NDArray[UTCDateTime]): """ Remove Correlations that contain any time given in ``utcs``. :param utcs: Array Containing UTC times that should be filtered. If UTC is between any of corr_start and corr_end, the corresponding CorrTrace will be removed from the stream. :type utcs: npt.ArrayLike[UTCDateTime] :return: filtered CorrStream :rtype: CorrStream """ cst_filt = CorrStream() for ctr in self: if not np.any(np.all( [utcs > ctr.stats.corr_start, utcs < ctr.stats.corr_end], axis=0)): cst_filt.append(ctr) return cst_filt
[docs] def remove_duplicates(self): """ Removes identical CorrTraces. .. note:: This action is performed **in-place**. If you want to keep the original data use :func:`~seismic.correlate.stream.CorrStream.copy()` """ cst_filt = CorrStream() for ctr in self: if ctr not in cst_filt: cst_filt.append(ctr) self.traces = cst_filt.traces
[docs] def select_corr_time( self, starttime: UTCDateTime, endtime: UTCDateTime, include_partially_selected: bool = True): """ Selects correlations that are inside of the requested time window. :param starttime: Requested start :type starttime: UTCDateTime :param endtime: Requested end :type endtime: UTCDateTime :param include_partially_selected: If set to ``True``, also the half selected time window **before** the requested time will be attached Given the following stream containing 6 correlations, "|" are the correlation starts and ends, "A" is the requested starttime and "B" the corresponding endtime:: | |A | | B | | 1 2 3 4 5 6 ``include_partially_selected=True`` will select samples 2-4, ``include_partially_selected=False`` will select samples 3-4 only. Defaults to True :type include_partially_selected: bool, optional :return: Correlation Stream holding all selected traces :rtype: CorrStream """ self.sort(keys=['corr_start']) outst = CorrStream() # the 2 seconds difference are to avoid accidental smoothing if include_partially_selected: for tr in self: if (tr.stats.corr_end > starttime and tr.stats.corr_end < endtime) \ or tr.stats.corr_end == endtime: outst.append(tr) return outst # else for tr in self: if tr.stats.corr_start >= starttime \ and tr.stats.corr_end <= endtime: outst.append(tr) return outst
[docs] def select_time( self, start: Tuple[int, int, float], end: Tuple[int, int, float], exclude: bool = False): """ Selects correlations that are inside of the requested time window. :param start: Start time given as Tuple in the form (h, m, s) :type start: Tuple[int, int, float] :param end: End time (refers to corr_end) given as Tuple in the form (h, m, s). :type end: Tuple[int, int, float] :param exclude: Exclude the times inside of the (start, end) interval, defaults to False :type exclude: bool, optional :return: A CorrStream holding the selected CorrTraces :rtype: CorrStream """ cst_select = CorrStream() start = datetime.time(*start) end = datetime.time(*end) for tr in self: if tr.stats.corr_start.time >= start \ and tr.stats.corr_end.time <= end: if not exclude: cst_select.append(tr) else: if exclude: cst_select.append(tr) return cst_select
[docs] def slide( self, window_length: float, step: float, include_partially_selected: bool = True, starttime: UTCDateTime = None, endtime: UTCDateTime = None): """ Generator yielding correlations that are inside of each requested time window and inside of this stream. Please keep in mind that it only returns a new view of the original data. Any modifications are applied to the original data as well. If you don't want this you have to create a copy of the yielded windows. Also be aware that if you modify the original data and you have overlapping windows, all following windows are affected as well. Not all yielded windows must have the same number of traces. The algorithm will determine the maximal temporal extents by analysing all Traces and then creates windows based on these times. :param window_length: The length of the requested time window in seconds. Note that the window length has to correspond at least to the length of the longest correlation window (i.e., the length of the correlated waveforms). This is because the correlations cannot be sliced. :type window_length: float :param step: The step between the start times of two successive windows in seconds. Has to be greater than 0 :type step: float :param include_partially_selected: If set to ``True``, also the half selected time window **before** the requested time will be attached Given the following stream containing 6 correlations, "|" are the correlation starts and ends, "A" is the requested starttime and "B" the corresponding endtime:: | |A | | B | | 1 2 3 4 5 6 ``include_partially_selected=True`` will select samples 2-4, ``include_partially_selected=False`` will select samples 3-4 only. Defaults to True. :type include_partially_selected: bool, optional :param starttime: Start the sequence at this time instead of the earliest available starttime. :type starttime: UTCDateTime :param endtime: Start the sequence at this time instead of the latest available endtime. :type endtime: UTCDateTime """ if starttime is None: starttime = min(tr.stats.corr_start for tr in self) if endtime is None: endtime = max(tr.stats.corr_end for tr in self) if window_length < max( tr.stats.corr_end-tr.stats.corr_start for tr in self): raise ValueError( 'The length of the requested time window has to be larger or' 'equal than the actual correlation length of one window.' 'i.e., correlations can not be sliced, only selected.') if step <= 0: raise ValueError('Step has to be larger than 0.') windows = np.arange( starttime.timestamp, endtime.timestamp, step) if len(windows) < 1: return for start in windows: start = UTCDateTime(start) stop = start + window_length temp = self.select_corr_time( start, stop, include_partially_selected=include_partially_selected) # It might happen that there is a time frame where there are no # windows, e.g. two traces separated by a large gap. if not temp: continue yield temp
[docs] def stack( self, weight: str = 'by_length', starttime: UTCDateTime = None, endtime: UTCDateTime = None, stack_len: int | str = 0, regard_location=True, norm_traces: bool = False): """ Average the data of all traces in the given time windows. Will only stack data from the same network/channel/station combination. Location codes will only optionally be regarded. :param starttime: starttime of the stacking time windows. If None, the earliest available is chosen, defaults to None. :type starttime: UTCDateTime, optional :param endtime: endtime of the stacking time windows. If None, the latest available is chosen, defaults to None :type endtime: UTCDateTime, optional :param stack_len: Length of one stack. Is either a value in seconds, the special option "daily" (creates 24h stacks that always start at midnight), or 0 for a single stack over the whole time period, defaults to 0. :type stack_len: intorstr, optional :param regard_location: Don't stack correlations with varying location code combinations, defaults to True. :type regard_location: bool, optional :param norm_traces: norm each trace by its maximum before stacking. Defaults to false :type norm_traces: bool, optional :return: A stream holding the stacks. :rtype: :class`~seismic.correlate.stream.CorrStream` """ # Seperate if there are different stations channel and or locations # involved if stack_len == 0: return stack_st_by_group( self, regard_location, weight, norm_traces) # else self.sort(keys=['corr_start']) if not starttime: starttime = self[0].stats.corr_start if not endtime: endtime = self[-1].stats.corr_end outst = CorrStream() if stack_len == 'daily': starttime = UTCDateTime( year=starttime.year, julday=starttime.julday) stack_len = 3600*24 for st in self.slide( stack_len, stack_len, include_partially_selected=True, starttime=starttime, endtime=endtime): outst.extend(stack_st_by_group( st, regard_location, weight, norm_traces)) return outst
def _to_matrix( self, network: str = None, station: str = None, channel: str = None, location: str = None, times: Tuple[UTCDateTime, UTCDateTime] = None) -> Tuple[ np.ndarray, Iterator[Stats]]: """ Creates a numpy array from the data in the :class:`~seismic.correlate.stream.Stream` object. Also returns a list of the Stats objects. The positional arguments are filter arguments. :param st: Input Stream :type st: CorrStream :return: both a numpy array (i.e., matrix) and a list of the stats :rtype: Tuple[np.ndarray, Iterator[Stats]] """ st = self.select(network, station, location, channel) if times: st = st.select_corr_time(times[0], times[1]) st.sort(keys=['corr_start']) A = np.empty((st.count(), st[0].stats.npts)) stats = [] for ii, tr in enumerate(st): A[ii] = tr.data stats.append(tr.stats) return A, stats
[docs]class CorrTrace(Trace): """ Baseclass to hold correlation data. Derived from the class :class:`~obspy.core.trace.Trace`. """ def __init__( self, data: np.ndarray, header1: Stats = None, header2: Stats = None, inv: Inventory = None, start_lag: float = None, end_lag: float = None, _header: dict = None): """ Initialise the correlation trace. Is done by combining the stats of the two :class:`~obspy.core.trace.Trace` objects' headers. If said headers do not contain Station information (i.e., coordinates), an :class:`~obspy.core.inventory.Inventory` with information about both stations should be provided as well. :param data: The correlation data :type data: np.ndarray :param header1: header of the first trace, defaults to None :type header1: Stats, optional :param header2: header of the second trace, defaults to None :type header2: Stats, optional :param inv: Inventory object for the stations, defaults to None :type inv: Inventory, optional :param start_lag: The lag of the first sample of the correlation given in seconds. :type start_lag: float :param end_lag: The lag of the last sample of the correlation in seconds. :type end_lag: float :param _header: Already combined header, used when reading correlations from a file, defaults to None :type _header: dict, optional """ if _header: header = CorrStats(_header) elif not header1 and not header2: header = CorrStats() if start_lag: header['start_lag'] = start_lag else: header, data = alphabetical_correlation( header1, header2, start_lag, end_lag, data, inv) super(CorrTrace, self).__init__(data=data) self.stats = header self.stats['npts'] = len(data) def __str__(self, id_length: int = None) -> str: """ Return short summary string of the current trace. :rtype: str :return: Short summary string of the current trace containing the SEED identifier, start time, end time, sampling rate and number of points of the current trace. .. rubric:: Example >>> tr = Trace(header={'station':'FUR', 'network':'GR'}) >>> str(tr) # doctest: +ELLIPSIS 'GR.FUR.. | 1970-01-01T00:00:00.000000Z - ... | 1.0 Hz, 0 samples' """ # set fixed id width if id_length: out = "%%-%ds" % (id_length) trace_id = out % self.id else: trace_id = "%s" % self.id out = '' # output depending on delta or sampling rate bigger than one if self.stats.sampling_rate < 0.1: if hasattr(self.stats, 'preview') and self.stats.preview: out = out + ' | '\ "%(corr_start)s - %(corr_end)s | " + \ "%(delta).1f s, %(npts)d samples [preview]" else: out = out + ' | '\ "%(corr_start)s - %(corr_end)s | " + \ "%(delta).1f s, %(npts)d samples" else: if hasattr(self.stats, 'preview') and self.stats.preview: out = out + ' | '\ "%(corr_start)s - %(corr_end)s | " + \ "%(sampling_rate).1f Hz, %(npts)d samples [preview]" else: out = out + ' | '\ "%(corr_start)s - %(corr_end)s | " + \ "%(sampling_rate).1f Hz, %(npts)d samples" # check for masked array if np.ma.count_masked(self.data): out += ' (masked)' return trace_id + out % (self.stats)
[docs] def plot( self, tlim: Tuple[float, float] = None, ax: plt.Axes = None, outputdir: str = None, clean: bool = False) -> plt.Axes: """ Plots thios CorrelationTrace. :param tlim: Limits for the lapse axis in seconds, defaults to None :type tlim: Tuple[float, float], optional :param ax: Plot in existing axes, defaults to None :type ax: plt.Axes, optional :param outputdir: Save this plot? Defaults to None :type outputdir: str, optional :param clean: Make a clean plot without labels & axes, defaults to False. :type clean: bool, optional """ return plot_ctr(self, tlim, ax, outputdir, clean)
[docs] def times(self) -> np.ndarray: """ Convenience Function that returns an array holding the lag times of the correlation. :return: Array with lag times :rtype: np.ndarray """ # this way there won't be problems with numerical errors for small # delta return np.arange(self.stats.npts)*self.stats.delta\ + self.stats.start_lag
[docs]def alphabetical_correlation( header1: Stats, header2: Stats, start_lag: float, end_lag: float, data: np.ndarray, inv: Inventory) -> Tuple[CorrStats, np.ndarray]: """ Make sure that Correlations are always created in alphabetical order, so that we won't have both a correlation for AB-CD and CD-AB. If the correlation was computed in the wrong order, the corr-data will be flipped along the t-axis. :param header1: Header of the first trace. :type header1: Stats :param header2: Header of the second trace :type header2: Stats :param start_lag: start lag in s :type start_lag: float :param end_lag: end lag in s :type end_lag: float :param data: The computed cross-correlation for header1-header2 :type data: np.ndarray :param inv: The inventory holding the station coordinates. Only needed if coords aren't provided in stats. :type inv: Inventory :return: the header for the CorrTrace and the data (will also be modified in place) :rtype: Tuple[Stats, np.ndarray] """ # make sure the order is correct # Will do that always alphabetically sorted sort1 = header1.network + header1.station + header1.channel sort2 = header2.network + header2.station + header2.channel sort = [sort1, sort2] sorted = sort.copy() sorted.sort() if sort != sorted: header = combine_stats( header2, header1, -end_lag, inv=inv) # reverse array and lag times data = np.flip(data) else: header = combine_stats( header1, header2, start_lag, inv=inv) return header, data
[docs]def combine_stats( stats1: Stats, stats2: Stats, start_lag: float, inv: Inventory = None) -> CorrStats: """ Combine the meta-information of two ObsPy Trace.Stats objects This function returns a ObsPy :class:`~obspy.core.trace.Stats` object obtained combining the two associated with the input Traces. Namely ``stats1`` and ``stats2``. The fields ['network','station','location','channel'] are combined in a ``-`` separated fashion to create a "pseudo" SEED like ``id``. For all the others fields, only "common" information are retained: This means that only keywords that exist in both dictionaries will be included in the resulting one. :type stats1: :class:`~obspy.core.trace.Stats` :param stats1: First Trace's stats :type stats2: :class:`~obspy.core.trace.Stats` :param stats2: Second Trace's stats :param start_lag: The lag of the first sample of the correlation given in seconds (usually negative). :type start_lag: float :type inv: :class:`~obspy.core.inventory.Inventory`, optional :param inv: Inventory containing the station coordinates. Only needed if station coordinates are not in Trace.Stats. Defaults to None. :rtype: :class:`~obspy.core.trace.Stats` :return: **stats**: combined Stats object """ if not isinstance(stats1, Stats): raise TypeError("stats1 must be an obspy Stats object.") if not isinstance(stats2, Stats): raise TypeError("stats2 must be an obspy Stats object.") # We also have to remove these as they are obspy AttributeDicts as well stats1.pop('asdf', None) stats2.pop('asdf', None) tr1_keys = list(stats1.keys()) tr2_keys = list(stats2.keys()) stats = CorrStats() # actual correlation times stats['corr_start'] = max(stats1.starttime, stats2.starttime) stats['corr_end'] = min(stats1.endtime, stats2.endtime) # Adjust the information to create a new SEED like id keywords = ['network', 'station', 'location', 'channel'] sac_keywords = ['sac'] for key in keywords: if key in tr1_keys and key in tr2_keys: stats[key] = stats1[key] + '-' + stats2[key] for key in tr1_keys: if key not in keywords and key not in sac_keywords: if key in tr2_keys: if stats1[key] == stats2[key]: # in the stats object there are read only objects try: stats[key] = stats1[key] except (AttributeError, KeyError): pass try: if ('stla' and 'stlo' and 'stel') in stats1: stats['stla'] = stats1.stla stats['stlo'] = stats1.stlo stats['stel'] = stats1.stel stats['evla'] = stats2.stla stats['evlo'] = stats2.stlo stats['evel'] = stats2.stel else: stats['stla'] = stats1.sac.stla stats['stlo'] = stats1.sac.stlo stats['stel'] = stats1.sac.stel stats['evla'] = stats2.sac.stla stats['evlo'] = stats2.sac.stlo stats['evel'] = stats2.sac.stel stats1.update(stats1['sac']) stats2.update(stats2['sac']) az, baz, dist = m3ut.trace_calc_az_baz_dist(stats1, stats2) stats['dist'] = dist / 1000 stats['az'] = az stats['baz'] = baz except (AttributeError, KeyError): try: inv1 = inv.select( network=stats1.network, station=stats1.station) inv2 = inv.select( network=stats2.network, station=stats2.station) stats['stla'] = inv1[0][0].latitude stats['stlo'] = inv1[0][0].longitude stats['stel'] = inv1[0][0].elevation stats['evla'] = inv2[0][0].latitude stats['evlo'] = inv2[0][0].longitude stats['evel'] = inv2[0][0].elevation az, baz, dist = m3ut.inv_calc_az_baz_dist(inv1, inv2) stats['dist'] = dist / 1000 stats['az'] = az stats['baz'] = baz except (IndexError, AttributeError): warnings.warn("No station coordinates provided.") stats.pop('sac', None) stats.pop('response', None) stats['_format'] = 'hdf5' # note that those have to be adapted whenever several correlations are # stacked stats['start_lag'] = start_lag return stats
Compare_Str = "{network}.{station}.{channel}.{location}" Compare_Str_No_Loc = "{network}.{station}.{channel}"
[docs]def compare_tr_id(tr0: Trace, tr1: Trace, regard_loc: bool = True) -> bool: """ Check whether two traces are from the same channel, station, network, and, optionally, location. Useful for stacking :param tr0: first trace :type tr0: :class:`~obspy.core.trace.Trace` :param tr1: second trace :type tr1: :class:`~obspy.core.trace.Trace` :param regard_loc: Regard the location code or not :type regard_loc: bool :return: Bool whether the two are from the same (True) or not (False) :rtype: bool """ if regard_loc: return Compare_Str.format(**tr0.stats) \ == Compare_Str.format(**tr1.stats) else: return Compare_Str_No_Loc.format(**tr0.stats) \ == Compare_Str_No_Loc.format(**tr1.stats)
[docs]def stack_st_by_group( st: Stream, regard_loc: bool, weight: str, norm_traces: bool = False) -> CorrStream: """ Stack all traces that belong to the same network, station, channel, and (optionally) location combination in the input stream. :param st: input Stream :type st: Stream :param regard_loc: Seperate data with different location code :type regard_loc: bool :param norm_traces: norm each trace by its maximum before stacking. Defaults to false :type norm_traces: bool, optional :return: :class:`~seismic.correlate.stream.CorrStream` :rtype: CorrStream """ if regard_loc: key = "{network}.{station}.{channel}.{location}" else: key = "{network}.{station}.{channel}" stackdict = {} for tr in st: stackdict.setdefault(key.format(**tr.stats), CorrStream()).append(tr) stackst = CorrStream() for k in stackdict: stackst.append(stack_st( stackdict[k], weight, norm=norm_traces)) return stackst
[docs]def stack_st(st: CorrStream, weight: str, norm: bool = True) -> CorrTrace: """ Returns an average of the data of all traces in the stream. Also adjusts the corr_start and corr_end parameters in the header. :param st: input Stream :type st: CorrStream :param weight: type of weigthing to use. Either `mean` or `by_length` :type weigth: str :param norm: Should the traces be normalised by their absolute maximum prior to stacking? :type norm: bool :return: Single trace with stacked data :rtype: CorrTrace """ st.sort(keys=['corr_start']) stats = st[0].stats.copy() stats['corr_end'] = st[-1].stats['corr_end'] st.sort(keys=['npts']) npts = st[-1].stats.npts stack = [] dur = [] # duration of each trace for tr in st.select(npts=npts): stack.append(tr.data) dur.append(tr.stats.corr_end-tr.stats.corr_start) A = np.array(stack) if weight == 'mean' or weight == 'average': data = np.nanmean(A, axis=0) if norm: norm = np.nanmax(np.abs(data)) data /= norm # np.tile(np.atleast_2d(norm).T, (1, A.shape[1])) return CorrTrace(data, _header=stats) elif weight == 'by_length': # Weight by the length of each trace data = np.nansum((A.T*np.array(dur)).T, axis=0)/np.nansum(dur) if norm: norm = np.nanmax(np.abs(data)) data /= norm # np.tile(np.atleast_2d(norm).T, (1, A.shape[1])) return CorrTrace(data=data, _header=stats)
[docs]def convert_statlist_to_bulk_stats( statlist: List[CorrStats], varying_loc: bool = True, varying_channel: bool = False) -> CorrStats: """ Converts a list of :class:`~seismic.correlate.stream.CorrTrace` stats objects to a single stats object that can be used for the creation of a :class:`~seismic.correlate.stream.CorrBulk` object :param statlist: list of Stats :type statlist: List[Stats] :param varying_loc: Set true if the location codes vary. Defaults to True. :type varying_loc: bool :param varying_loc: Set true if the channel codes vary (e.g., EHZ to BHZ), defaults to False. :type varying_loc: bool :raises ValueError: raised if data does not fit together :return: single Stats object :rtype: Stats """ stats = statlist[0].copy() # can change from trace to trace mutables = ['corr_start', 'corr_end'] # Should / have to be identical for each trace # Not 100% sure if start and end_lag should be on this list immutables = [ 'npts', 'sampling_rate', 'network', 'station', 'start_lag', 'end_lag', 'stla', 'stlo', 'stel', 'evla', 'evlo', 'evel', 'dist', 'az', 'baz'] if len(set([st['location'] for st in statlist])) == 1: varying_loc = False if len(set([st['channel'] for st in statlist])) == 1: varying_channel = False if varying_loc: mutables += ['location'] else: immutables += ['location'] if varying_channel: mutables += ['channel'] else: immutables += ['channel'] for key in mutables: stats[key] = [] for trstat in statlist: for key in mutables: stats[key] += [trstat[key]] for key in immutables: try: if stats[key] != trstat[key]: raise ValueError( 'The stream contains data with different properties. ' + f'The differing property is {key}. ' + f'With the values: {stats[key]} and {trstat[key]}. ' + f'For station {stats["network"]}.{stats["station"]}') except KeyError: warnings.warn(f'No information about {key} in header.') stats['ntrcs'] = len(statlist) return stats