Source code for seismic.correlate.correlate

'''
:copyright:
    The SeisMIC development team (makus@gfz-potsdam.de).
:license:
    EUROPEAN UNION PUBLIC LICENCE v. 1.2
   (https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12)
:author:
   Peter Makus (makus@gfz-potsdam.de)

Created: Monday, 29th March 2021 07:58:18 am
Last Modified: Wednesday, 19th June 2024 03:39:46 pm
'''
from copy import deepcopy
from typing import Iterator, List, Tuple, Optional
from warnings import warn
import os
import logging
import json
import warnings
import yaml
import glob
import fnmatch

from mpi4py import MPI
import numpy as np
from obspy import Stream, UTCDateTime, Inventory, Trace
from tqdm import tqdm

from seismic.correlate.stream import CorrTrace, CorrStream
from seismic.correlate import preprocessing_td as pptd
from seismic.correlate import preprocessing_stream as ppst
from seismic.db.corr_hdf5 import CorrelationDataBase, h5_FMTSTR
from seismic.trace_data.waveform import Store_Client
from seismic.utils.fetch_func_from_str import func_from_str
from seismic.utils import miic_utils as mu


[docs]class Correlator(object): """ Object to manage the actual Correlation (i.e., Green's function retrieval) for the database. """ def __init__(self, store_client: Store_Client, options: dict or str): """ Initiates the Correlator object. When executing :func:`~seismic.correlate.correlate.Correlator.pxcorr()`, it will actually compute the correlations and save them in an hdf5 file that can be handled using :class:`~seismic.db.corr_hdf5.CorrelationDataBase`. Data has to be preprocessed before calling this (i.e., the data already has to be given in an ASDF format). Consult :class:`~seismic.trace_data.preprocess.Preprocessor` for information on how to proceed with this. :param options: Dictionary containing all options for the correlation. Can also be a path to a yaml file containing all the keys required in options. :type options: dict or str """ if isinstance(options, str): with open(options) as file: options = yaml.load(file, Loader=yaml.FullLoader) # init MPI self.comm = MPI.COMM_WORLD self.psize = self.comm.Get_size() self.rank = self.comm.Get_rank() # directories self.proj_dir = options['proj_dir'] self.corr_dir = os.path.join(self.proj_dir, options['co']['subdir']) try: self.save_comps_separately = options['save_comps_separately'] except KeyError: self.save_comps_separately = False logdir = os.path.join(self.proj_dir, options['log_subdir']) if self.rank == 0: os.makedirs(self.corr_dir, exist_ok=True) os.makedirs(logdir, exist_ok=True) # Logging - rank dependent if self.rank == 0: tstr = UTCDateTime.now().strftime('%Y-%m-%d-%H:%M') else: tstr = None tstr = self.comm.bcast(tstr, root=0) rankstr = str(self.rank).zfill(3) loglvl = mu.log_lvl[options['log_level'].upper()] self.logger = logging.getLogger("seismic.Correlator%s" % rankstr) self.logger.setLevel(loglvl) logging.captureWarnings(True) warnlog = logging.getLogger('py.warnings') fh = logging.FileHandler(os.path.join(logdir, 'correlate%srank%s' % ( tstr, rankstr))) fh.setLevel(loglvl) self.logger.addHandler(fh) warnlog.addHandler(fh) fmt = logging.Formatter( fmt='%(asctime)s - %(levelname)s - %(message)s') fh.setFormatter(fmt) consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(fmt) self.logger.addHandler(consoleHandler) # Write the options dictionary to the log file if self.rank == 0: opt_dump = deepcopy(options) # json cannot write the UTCDateTime objects that might be in here for step in opt_dump['co']['preProcessing']: if 'stream_mask_at_utc' in step['function']: startsstr = [ t.format_fissures() for t in step['args']['starts']] step['args']['starts'] = startsstr if 'ends' in step['args']: endsstr = [ t.format_fissures() for t in step['args']['ends']] step['args']['ends'] = endsstr with open(os.path.join( logdir, 'params%s.txt' % tstr), 'w') as file: file.write(json.dumps(opt_dump, indent=1)) self.options = options['co'] # requested combis? if 'xcombinations' in self.options: self.rcombis = self.options['xcombinations'] if self.rcombis == 'None': # cumbersome, but someone used it wrong so let's hardcode self.rcombis = None else: self.rcombis = None # find the available data network = options['net']['network'] station = options['net']['station'] component = options['net']['component'] # location = options['net']['location'] # Store_Client self.store_client = store_client if isinstance(station, list) and len(station) == 1: station = station[0] if isinstance(network, list) and len(network) == 1: network = network[0] # if isinstance(location, list) and len(network) == 1: # network = network[0] if ( network == '*' and isinstance(station, str) and '*' not in station): raise ValueError( 'Stations has to be either: \n' + '1. A list of the same length as the list of networks.\n' + '2. \'*\' That is, a wildcard (string).\n' + '3. A list and network is a string describing one ' + 'station code.') elif isinstance(station, str) and isinstance(network, str): station = [[network, station]] elif station == '*' and isinstance(network, list): # This is most likely not thread-safe if self.rank == 0: station = [] for net in network: station.extend(store_client.get_available_stations(net)) else: station = None station = self.comm.bcast(station, root=0) elif isinstance(network, list) and isinstance(station, list): if len(network) != len(station): raise ValueError( 'Stations has to be either: \n' + '1. A list of the same length as the list of networks.\n' + '2. \'*\' That is, a wildcard (string).\n' + '3. A list and network is a string describing one ' + 'station code.') station = list([n, s] for n, s in zip(network, station)) elif isinstance(station, list) and isinstance(network, str): for ii, stat in enumerate(station): station[ii] = [network, stat] else: raise ValueError( 'Stations has to be either: \n' + '1. A list of the same length as the list of networks.\n' + '2. \'*\' That is, a wildcard (string).\n' + '3. A list and network is a string describing one ' + 'station code.') if self.rank == 0: self.avail_raw_data = [] for net, stat in station: self.avail_raw_data.extend( self.store_client._translate_wildcards( net, stat, component, location='*')) # make sure this only contains unique combinations # with several cores it added entries several times, don't know # why? # In contrast to self.station, self.avail_raw_data also contains # information about the available channels, so they can be # read and processed on different cores self.avail_raw_data = np.unique( self.avail_raw_data, axis=0).tolist() else: self.avail_raw_data = None self.avail_raw_data = self.comm.bcast( self.avail_raw_data, root=0) self.station = np.unique(np.array([ [d[0], d[1]] for d in self.avail_raw_data]), axis=0).tolist() # if only certain combis are requested, remove stations not within # these self._filter_by_rcombis() self.logger.debug( 'Fetching data from the following stations:\n%a' % [ f'{n}.{s}' for n, s in self.station]) self.sampling_rate = self.options['sampling_rate'] if 'allow_different_params' in self.options: self._allow_different_params = self.options[ 'allow_different_params'] else: self._allow_different_params = False def _filter_by_rcombis(self): """ Removes stations from the list of available stations that are not requested in the cross-combinations. """ if self.rcombis is None or self.options['combination_method'] \ != 'betweenStations': return self.station = [ [n, s] for n, s in self.station if fnmatch.filter(self.rcombis, f'{n}-*.{s}-*') or fnmatch.filter( self.rcombis, f'*-{n}.*-{s}')] # same check for avail_raw_data self.avail_raw_data = [ [n, s, loc, c] for n, s, loc, c in self.avail_raw_data if fnmatch.filter(self.rcombis, f'{n}-*.{s}-*') or fnmatch.filter( self.rcombis, f'*-{n}.*-{s}')]
[docs] def find_interstat_dist(self, dis: float): """ Find stations in database with interstation distance smaller than dis. If no station inventories are available, they will be downloaded. :param dis: Find all Stations with distance less than `dis` [in m] :type dis: float .. note:: only the subset of the in ``params.yaml`` defined networks and stations will be queried. """ if not self.options['combination_method'] == 'betweenStations': raise ValueError( 'This function is only available if combination method ' + 'is set to "betweenStations".') # Update the store clients invetory self.store_client.read_inventory() # list of requested combinations if self.rcombis is None: self.rcombis = [] for ii, (n0, s0) in enumerate(self.station): inv0 = self.store_client.select_inventory_or_load_remote( n0, s0) for n1, s1 in self.station[ii:]: inv1 = self.store_client.select_inventory_or_load_remote( n1, s1) if mu.filter_stat_dist(inv0, inv1, dis): self.rcombis.append('%s-%s.%s-%s' % (n0, n1, s0, s1)) else: raise ValueError( 'Either filter for specific cross correlations or a maximum ' + 'distance.')
[docs] def find_existing_times( self, tag: str, channel: str = '*') -> dict: """ Returns the already existing starttimes in form of a dictionary (see below) :param tag: The tag that the waveforms are saved under :type tag: str :param channel: Channel Combination Code (e.g., CH0-CH1), wildcards accepted. Defaults to '*' :type channel: str, optional :return: Dictionary that is structured as in the example below :rtype: dict Examples -------- >>> out_dict = my_correlator.find_existing_times('mytag', 'BHZ-BHH') >>> print(out_dict) {'NET0.STAT0': { 'NET1.STAT1': {'BHZ-BHH': [%list of starttimes] , 'NET2.STAT2': {'BHZ-BHH':[%list of starttimes]}}} """ netlist, statlist = list(zip(*self.station)) netcombs, statcombs = compute_network_station_combinations( netlist, statlist, method=self.options['combination_method'], combis=self.rcombis) ex_dict = {} for nc, sc in zip(netcombs, statcombs): outfs = h5_FMTSTR.format( dir=self.corr_dir, network=nc, station=sc, location='*', channel='*') if not len(glob.glob(outfs)): continue d = {} for outf in glob.glob(outfs): # retrieve location codes l0, l1 = os.path.basename(outf).split('.')[2].split('-') with CorrelationDataBase( outf, corr_options=self.options, mode='r', _force=self._allow_different_params) as cdb: d.setdefault('%s-%s' % (l0, l1), {}) d[f'{l0}-{l1}'].update( cdb.get_available_starttimes( nc, sc, tag, f'{l0}-{l1}', channel)) s0, s1 = sc.split('-') n0, n1 = nc.split('-') # obtain location codes ex_dict.setdefault('%s.%s' % (n0, s0), {}) ex_dict['%s.%s' % (n0, s0)]['%s.%s' % (n1, s1)] = d return ex_dict
[docs] def pxcorr(self): """ Start the correlation with the parameters that were defined when initiating the object. """ cst = CorrStream() if self.rank == 0: self.logger.debug('Reading Inventory files.') # Fetch station coordinates if self.rank == 0: try: inv = self.store_client.read_inventory() except Exception as e: if self.options['remove_response']: raise FileNotFoundError( 'No response information could be found.' + 'If you set remove_response to True, you will need' + 'a station inventory.') logging.warning(e) warnings.warn( 'No Station Inventory found. Proceeding without.') inv = None else: inv = None inv = self.comm.bcast(inv, root=0) for st, write_flag in self._generate_data(): cst.extend(self._pxcorr_inner(st, inv)) if write_flag: self.logger.debug('Writing Correlations to file.') # Here, we can recombine the correlations for the read_len # size (i.e., stack) # Write correlations to HDF5 if cst.count(): self._write(cst) cst.clear() # write the remaining data if cst.count(): self._write(cst) cst.clear()
def _pxcorr_inner(self, st: Stream, inv: Inventory) -> CorrStream: """ Inner loop of pxcorr. Don't call this function! """ # We start out by moving the stream into a matrix self.logger.debug( 'Converting Stream to Matrix') # put all the data into a single stream starttime = [] npts = [] for tr in st: starttime.append(tr.stats['starttime']) npts.append(tr.stats['npts']) npts = np.max(np.array(npts)) A, st = st_to_np_array(st, npts) self.options.update( {'starttime': starttime, 'sampling_rate': self.sampling_rate}) self.logger.debug('Computing Cross-Correlations.') A, startlags = self._pxcorr_matrix(A) self.logger.debug('Converting Matrix to CorrStream.') # put trace into a stream cst = CorrStream() if A is None: # No new data return cst if self.rank == 0: for ii, (startlag, comb) in enumerate( zip(startlags, self.options['combinations'])): endlag = startlag + len(A[ii, :])/self.options['sampling_rate'] cst.append( CorrTrace( A[ii], header1=st[comb[0]].stats, header2=st[comb[1]].stats, inv=inv, start_lag=startlag, end_lag=endlag)) else: cst = None cst = self.comm.bcast(cst, root=0) return cst def _write(self, cst): """ Write correlation stream to files. :param cst: CorrStream containing the correlations :type cst: :class:`~seismic.correlate.stream.CorrStream` """ if not cst.count(): self.logger.debug('No new data written.') return # Make sure that each core writes to a different file filelist = list(set(h5_FMTSTR.format( dir=self.corr_dir, network=tr.stats.network, station=tr.stats.station, location=tr.stats.location, channel=tr.stats.channel) for tr in cst)) # Better if the same cores keep writing to the same files filelist.sort() # Decide which process writes to which station pmap = np.arange(len(filelist))*self.psize/len(filelist) pmap = pmap.astype(np.int32) ind = pmap == self.rank for outf in np.array(filelist)[ind]: net, stat, loc, cha = os.path.basename(outf).split('.')[0:4] cstselect = cst.select( network=net, station=stat, location=loc, channel=cha) if self.options['subdivision']['recombine_subdivision']: stack = cstselect.stack() stacktag = 'stack_%s' % str(self.options['read_len']) else: stack = None with CorrelationDataBase( outf, corr_options=self.options, _force=self._allow_different_params) as cdb: if cstselect.count(): cdb.add_correlation(cstselect, 'subdivision') if stack is not None: cdb.add_correlation(stack, stacktag) def _generate_data(self) -> Iterator[Tuple[Stream, bool]]: """ Returns an Iterator that loops over each start and end time with the requested window length. :yield: An obspy stream containing the time window x for all stations that were active during this time. :rtype: Iterator[Stream] """ if self.rank == 0: # find already available times self.ex_dict = self.find_existing_times('subdivision') self.logger.info('Already existing data: %s' % str(self.ex_dict)) else: self.ex_dict = None self.ex_dict = self.comm.bcast(self.ex_dict, root=0) if not self.ex_dict and self.options['preprocess_subdiv']: self.options['preprocess_subdiv'] = False if self.rank == 0: self.logger.warning( 'No existing data found.\nAutomatically setting ' 'preprocess_subdiv to False to optimise performance.') # the time window that the loop will go over t0 = UTCDateTime(self.options['read_start']).timestamp t1 = UTCDateTime(self.options['read_end']).timestamp loop_window = np.arange(t0, t1, self.options['read_inc']) # Taper ends for the deconvolution and filtering tl = 20 # Decide which process reads data from which station # Better than just letting one core read as this avoids having to # send very big chunks of data using MPI (MPI communication does # not support more than 2GB/comm operation) pmap = np.arange(len(self.avail_raw_data))*self.psize/len( self.avail_raw_data) pmap = pmap.astype(np.int32) ind = pmap == self.rank ind = np.arange(len(self.avail_raw_data))[ind] # Loop over read increments for t in tqdm(loop_window): write_flag = True # Write length is same as read length startt = UTCDateTime(t) endt = startt + self.options['read_len'] st = Stream() # loop over queried stations for net, stat, loc, cha in np.array(self.avail_raw_data)[ind]: # Load data stext = self.store_client._load_local( net, stat, loc, cha, startt, endt, True, False) mu.get_valid_traces(stext) if stext is None or not len(stext): # No data for this station to read continue st = st.extend(stext) # Stream based preprocessing # Downsampling # 04/04/2023 Downsample before preprocessing for performance # Check sampling frequency sampling_rate = self.options['sampling_rate'] # AA-Filter is done in this function as well try: st = mu.resample_or_decimate(st, sampling_rate) except ValueError as e: self.logger.error( 'Downsampling failed for ' f'{st[0].stats.network}.{st[0].stats.station} and time' f' {t}.\nThe Original Error Message was {e}.') continue # The actual data in the mseeds was changed from int to float64 # now, # Save some space by changing it back to 32 bit (most of the # digitizers work at 24 bit anyways) mu.stream_require_dtype(st, np.float32) if not self.options['preprocess_subdiv']: try: self.logger.debug('Preprocessing stream...') st = preprocess_stream( st, self.store_client, startt, endt, tl, **self.options) except ValueError as e: self.logger.error( 'Stream preprocessing failed for ' f'{st[0].stats.network}.{st[0].stats.station} and time' f' {t}.\nThe Original Error Message was {e}.') continue # Slice the stream in correlation length # -> Loop over correlation increments for ii, win in enumerate(generate_corr_inc(st, **self.options)): winstart = startt + ii*self.options['subdivision']['corr_inc'] winend = winstart + self.options['subdivision']['corr_len'] # Gather time windows from all stations to all cores winl = self.comm.allgather(win) win = Stream() for winp in winl: win.extend(winp) win = win.sort() # Get correlation combinations if self.rank == 0: self.logger.debug('Calculating combinations...') self.options['combinations'] = calc_cross_combis( win, self.ex_dict, self.options['combination_method'], rcombis=self.rcombis) else: self.options['combinations'] = None self.options['combinations'] = self.comm.bcast( self.options['combinations'], root=0) if not len(self.options['combinations']): # no new combinations for this time period self.logger.info( f'No new data for times {winstart}-{winend}') continue # Remove traces that won't be accessed at all win_indices = np.arange(len(win)) combindices = np.unique( np.hstack(self.options['combinations'])) popindices = np.flip( np.setdiff1d(win_indices, combindices)) for popi in popindices: del win[popi] if len(popindices): # now we have to recompute the combinations if self.rank == 0: self.logger.debug('removing redundant data.') self.logger.debug('Recalculating combinations...') self.options['combinations'] = calc_cross_combis( win, self.ex_dict, self.options['combination_method'], rcombis=self.rcombis) else: self.options['combinations'] = None self.options['combinations'] = self.comm.bcast( self.options['combinations'], root=0) if not len(self.options['combinations']): # no new combinations for this time period self.logger.info( f'No new data for times {winstart}-{winend}') continue # Stream based preprocessing if self.options['preprocess_subdiv']: try: win = preprocess_stream( win, self.store_client, winstart, winend, tl, **self.options) except ValueError as e: if st.count(): self.logger.error( 'Stream preprocessing failed for ' f'{st[0].stats.network}.{st[0].stats.station}' ' and time ' f'{t}.\nThe Original Error Message was {e}.') else: self.logger.error( 'Stream preprocessing failed for ' 'time ' f'{t}.\nThe Original Error Message was {e}.') continue if self.rank == 0: self.options['combinations'] = calc_cross_combis( win, self.ex_dict, self.options['combination_method'], rcombis=self.rcombis) else: self.options['combinations'] = None self.options['combinations'] = self.comm.bcast( self.options['combinations'], root=0) if not len(win): # no new combinations for this time period self.logger.info( f'No new data for times {winstart}-{winend}') continue self.logger.debug('Working on correlation times %s-%s' % ( str(win[0].stats.starttime), str(win[0].stats.endtime))) win = win.merge() win = win.trim(winstart, winend, pad=True) yield win, write_flag write_flag = False def _pxcorr_matrix(self, A: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: # time domain processing # map of traces on processes ntrc = A.shape[0] pmap = np.arange(ntrc)*self.psize/ntrc # This step was not in the original but is necessary for it to work? # maybe a difference in an old python/np version? pmap = pmap.astype(np.int32) # indices for traces to be worked on by each process ind = pmap == self.rank ###################################### corr_args = self.options['corr_args'] # time domain pre-processing params = {} for key in list(corr_args.keys()): if 'Processing' not in key: params.update({key: corr_args[key]}) params['sampling_rate'] = self.sampling_rate # The steps that aren't done before # nans from the masked parts are set to 0 np.nan_to_num(A, copy=False) for proc in corr_args['TDpreProcessing']: func = func_from_str(proc['function']) A[ind, :] = func(A[ind, :], proc['args'], params) # zero-padding A = pptd.zeroPadding(A, {'type': 'avoidWrapFastLen'}, params) ###################################### # FFT # Allocate space for rfft of data zmsize = A.shape # use next fast len instead? fftsize = zmsize[1]//2+1 B = np.zeros((ntrc, fftsize), dtype=np.csingle) B[ind, :] = np.fft.rfft(A[ind, :], axis=1) freqs = np.fft.rfftfreq(zmsize[1], 1./self.sampling_rate) ###################################### # frequency domain pre-processing params.update({'freqs': freqs}) # Here, I will have to make sure to add all the functions to the module for proc in corr_args['FDpreProcessing']: # The big advantage of this rather lengthy code is that we can also # import any function that has been defined anywhere else (i.e, # not only within the miic framework) func = func_from_str(proc['function']) B[ind, :] = func(B[ind, :], proc['args'], params) ###################################### # collect results self.comm.Allreduce(MPI.IN_PLACE, [B, MPI.FLOAT], op=MPI.SUM) ###################################### # correlation csize = len(self.options['combinations']) irfftsize = (fftsize-1)*2 sampleToSave = int( np.ceil( corr_args['lengthToSave'] * self.sampling_rate)) C = np.zeros((csize, sampleToSave*2+1), dtype=np.float32) pmap = np.arange(csize)*self.psize/csize pmap = pmap.astype(np.int32) ind = pmap == self.rank ind = np.arange(csize)[ind] startlags = np.zeros(csize, dtype=np.float32) for ii in ind: # offset of starttimes in samples(just remove fractions of samples) offset = ( self.options['starttime'][ self.options['combinations'][ii][0]] - self.options[ 'starttime'][self.options['combinations'][ii][1]]) if corr_args['center_correlation']: roffset = 0. else: # offset exceeding a fraction of integer roffset = np.fix( offset * self.sampling_rate) / self.sampling_rate # faction of samples to be compenasated by shifting offset -= roffset # normalization factor of fft correlation if corr_args['normalize_correlation']: norm = ( np.sqrt( 2.*np.sum(B[self.options[ 'combinations'][ii][0], :] * B[self.options['combinations'][ii][0], :].conj()) - B[self.options['combinations'][ii][0], 0]**2) * np.sqrt( 2.*np.sum(B[self.options[ 'combinations'][ii][1], :] * B[self.options['combinations'][ii][1], :].conj()) - B[self.options['combinations'][ii][1], 0]**2) / irfftsize).real else: norm = 1. M = ( B[self.options['combinations'][ii][0], :].conj() * B[self.options['combinations'][ii][1], :] * np.exp(1j * freqs * offset * 2 * np.pi)) ###################################### # frequency domain postProcessing # tmp = np.fft.irfft(M).real # cut the center and do fftshift C[ii, :] = np.concatenate( (tmp[-sampleToSave:], tmp[:sampleToSave+1]))/norm startlags[ii] = - sampleToSave / self.sampling_rate \ - roffset ###################################### # time domain postProcessing ###################################### # collect results self.logger.debug('%s %s' % (C.shape, C.dtype)) self.logger.debug('combis: %s' % (self.options['combinations'])) self.comm.Allreduce(MPI.IN_PLACE, [C, MPI.FLOAT], op=MPI.SUM) self.comm.Allreduce( MPI.IN_PLACE, [startlags, MPI.FLOAT], op=MPI.SUM) return (C, startlags)
[docs]def st_to_np_array(st: Stream, npts: int) -> Tuple[np.ndarray, Stream]: """ Converts an obspy stream to a matrix with the shape (npts, st.count()). Also returns the same stream but without the data arrays in tr.data. :param st: Input Stream :type st: Stream :param npts: Maximum number of samples per Trace :type npts: int :return: A stream and a matrix :rtype: np.ndarray """ A = np.zeros((st.count(), npts), dtype=np.float32) for ii, tr in enumerate(st): A[ii, :tr.stats.npts] = tr.data del tr.data # Not needed any more, just uses up RAM return A, st
def _compare_existing_data(ex_corr: dict, tr0: Trace, tr1: Trace) -> bool: # The actual starttime for the header is the later one of the two net0 = tr0.stats.network stat0 = tr0.stats.station cha0 = tr0.stats.channel net1 = tr1.stats.network stat1 = tr1.stats.station cha1 = tr1.stats.channel loc0 = tr0.stats.location loc1 = tr1.stats.location # Probably faster than checking a huge dict twice flip = ([net0, net1], [stat0, stat1], [loc0, loc1], [cha0, cha1]) \ != sort_comb_name_alphabetically( net0, stat0, net1, stat1, loc0, loc1, cha0, cha1) corr_start = max(tr0.stats.starttime, tr1.stats.starttime) try: if flip: return corr_start.format_fissures() in ex_corr[ f'{net1}.{stat1}'][f'{net0}.{stat0}'][ f'{loc1}-{loc0}'][f'{cha1}-{cha0}'] else: return corr_start.format_fissures() in ex_corr[ f'{net0}.{stat0}'][f'{net1}.{stat1}'][ f'{loc0}-{loc1}'][f'{cha0}-{cha1}'] except KeyError: return False
[docs]def is_in_xcombis(id1: str, id2: str, rcombis: List[str] = None) -> bool: """ Check if the specific combination is to be calculated according to xcombinations including the channel. xcombination are expected as Net1-Net2.Sta1-Sta2.Cha1-Cha2. (Channel information can be omitted) """ n1, s1, _, c1 = id1.split('.') n2, s2, _, c2 = id2.split('.') tcombi = f'{n1}-{n2}.{s1}-{s2}.{c1}-{c2}' tcombi2 = f'{n2}-{n1}.{s2}-{s1}.{c2}-{c1}' for combi in rcombis: if fnmatch.fnmatch(tcombi, combi+'*') or fnmatch.fnmatch( tcombi2, combi+'*'): return True return False
[docs]def calc_cross_combis( st: Stream, ex_corr: dict, method: str = 'betweenStations', rcombis: List[str] = None) -> list: """ Calculate a list of all cross correlation combination of traces in the stream: i.e. all combination with two different stations involved. :param st: Stream holding the tracecs to be correlated :type st: :class:`~obspy.Stream` :param ex_corr: dict holding the correlations that already exist in db :type ex_corr: dict :type method: stringf :param method: Determines which traces of the strem are combined. :param rcombis: requested combinations, only works if `method==betweenStations`. :type rcombis: List[str] strings are in form net0-net1.stat0-stat1 ``'betweenStations'``: Traces are combined if either their station or their network names are different. ``'betweenComponents'``: Traces are combined if their components (last letter of channel name) names are different and their station and network names are identical (single station cross-correlation). ``'autoComponents'``: Traces are combined only with themselves. ``'allSimpleCombinations'``: All Traces are combined once (onle one of (0,1) and (1,0)) ``'allCombinations'``: All traces are combined in both orders ((0,1) and (1,0)) """ combis = [] # sort alphabetically st = st.sort() if method == 'betweenStations': for ii, tr in enumerate(st): for jj in range(ii+1, len(st)): tr1 = st[jj] n = tr.stats.network n2 = tr1.stats.network s = tr.stats.station s2 = tr1.stats.station if n != n2 or s != s2: # check first whether this combi is in dict if _compare_existing_data(ex_corr, tr, tr1): continue if rcombis is not None and not is_in_xcombis( tr.id, tr1.id, rcombis): continue combis.append((ii, jj)) elif method == 'betweenComponents': for ii, tr in enumerate(st): for jj in range(ii+1, len(st)): tr1 = st[jj] if ((tr.stats['network'] == tr1.stats['network']) and (tr.stats['station'] == tr1.stats['station']) and ( tr.stats['channel'][-1] != tr1.stats['channel'][-1])): if _compare_existing_data(ex_corr, tr, tr1): continue combis.append((ii, jj)) elif method == 'autoComponents': for ii, tr in enumerate(st): if _compare_existing_data(ex_corr, tr, tr): continue combis.append((ii, ii)) elif method == 'allSimpleCombinations': for ii, tr in enumerate(st): for jj in range(ii, len(st)): tr1 = st[jj] if _compare_existing_data(ex_corr, tr, tr1): continue combis.append((ii, jj)) elif method == 'allCombinations': for ii, tr in enumerate(st): for jj, tr1 in enumerate(st): if _compare_existing_data(ex_corr, tr, tr1): continue combis.append((ii, jj)) else: raise ValueError("Method has to be one of ('betweenStations', " "'betweenComponents', 'autoComponents', " "'allSimpleCombinations' or 'allCombinations').") if not len(combis): warn('Method %s found no combinations.' % method) return combis
# All the rotations are still untested, should do that at some point # def rotate_multi_corr_stream(st: Stream) -> Stream: # """Rotate a stream with full Greens tensor from ENZ to RTZ # Take a stream with numerous correlation traces and rotate the # combinations of ENZ components into combinations of RTZ components in # all nine components of the Green's tensor are present. If not all nine # components are present no trace for this station combination is returned. # :type st: obspy.stream # :param st: stream with data in ENZ system # :rtype: obspy.stream # :return: stream in the RTZ system # """ # out_st = Stream() # while st: # tl = list(range(9)) # tst = st.select(network=st[0].stats['network'], # station=st[0].stats['station']) # cnt = 0 # for ttr in tst: # if ttr.stats['channel'][2] == 'E': # if ttr.stats['channel'][6] == 'E': # tl[0] = ttr # cnt += 1 # elif ttr.stats['channel'][6] == 'N': # tl[1] = ttr # cnt += 2 # elif ttr.stats['channel'][6] == 'Z': # tl[2] = ttr # cnt += 4 # elif ttr.stats['channel'][2] == 'N': # if ttr.stats['channel'][6] == 'E': # tl[3] = ttr # cnt += 8 # elif ttr.stats['channel'][6] == 'N': # tl[4] = ttr # cnt += 16 # elif ttr.stats['channel'][6] == 'Z': # tl[5] = ttr # cnt += 32 # elif ttr.stats['channel'][2] == 'Z': # if ttr.stats['channel'][6] == 'E': # tl[6] = ttr # cnt += 64 # elif ttr.stats['channel'][6] == 'N': # tl[7] = ttr # cnt += 128 # elif ttr.stats['channel'][6] == 'Z': # tl[8] = ttr # cnt += 256 # if cnt == 2**9-1: # st0 = Stream() # for t in tl: # st0.append(t) # st1 = _rotate_corr_stream(st0) # out_st += st1 # elif cnt == 27: # only horizontal component combinations present # st0 = Stream() # for t in [0, 1, 3, 4]: # st0.append(tl[t]) # st1 = _rotate_corr_stream_horizontal(st0) # out_st += st1 # elif cnt == 283: # horizontal combinations + ZZ # st0 = Stream() # for t in [0, 1, 3, 4]: # st0.append(tl[t]) # st1 = _rotate_corr_stream_horizontal(st0) # out_st += st1 # out_st.append(tl[8]) # for ttr in tst: # for ind, tr in enumerate(st): # if ttr.id == tr.id: # st.pop(ind) # return out_st # def _rotate_corr_stream_horizontal(st: Stream) -> Stream: # """ Rotate traces in stream from the EE-EN-NE-NN system to # the RR-RT-TR-TT system. The letters give the component order # in the input and output streams. Input traces are assumed to be of same # length and simultaneously sampled. # """ # # rotation angles # # phi1 : counter clockwise angle between E and R(towards second station) # # the leading -1 accounts fact that we rotate the coordinate system, # # not a vector # phi1 = - np.pi/180*(90-st[0].stats['sac']['az']) # # phi2 : counter clockwise angle between E and R(away from first station) # phi2 = - np.pi/180*(90-st[0].stats['sac']['baz']+180) # c1 = np.cos(phi1) # s1 = np.sin(phi1) # c2 = np.cos(phi2) # s2 = np.sin(phi2) # rt = Stream() # RR = st[0].copy() # RR.data = c1*c2*st[0].data - c1*s2*st[1].data - s1*c2*st[2].data +\ # s1*s2*st[3].data # tcha = list(RR.stats['channel']) # tcha[2] = 'R' # tcha[6] = 'R' # RR.stats['channel'] = ''.join(tcha) # rt.append(RR) # RT = st[0].copy() # RT.data = c1*s2*st[0].data + c1*c2*st[1].data - s1*s2*st[2].data -\ # s1*c2*st[3].data # tcha = list(RT.stats['channel']) # tcha[2] = 'R' # tcha[6] = 'T' # RT.stats['channel'] = ''.join(tcha) # rt.append(RT) # TR = st[0].copy() # TR.data = s1*c2*st[0].data - s1*s2*st[1].data + c1*c2*st[2].data -\ # c1*s2*st[3].data # tcha = list(TR.stats['channel']) # tcha[2] = 'T' # tcha[6] = 'R' # TR.stats['channel'] = ''.join(tcha) # rt.append(TR) # TT = st[0].copy() # TT.data = s1*s2*st[0].data + s1*c2*st[1].data + c1*s2*st[2].data +\ # c1*c2*st[3].data # tcha = list(TT.stats['channel']) # tcha[2] = 'T' # tcha[6] = 'T' # TT.stats['channel'] = ''.join(tcha) # rt.append(TT) # return rt # def _rotate_corr_stream(st: Stream) -> Stream: # """ Rotate traces in stream from the EE-EN-EZ-NE-NN-NZ-ZE-ZN-ZZ system to # the RR-RT-RZ-TR-TT-TZ-ZR-ZT-ZZ system. The letters give the component # in the input and output streams. Input traces are assumed to be of same # length and simultaneously sampled. # """ # # rotation angles # # phi1 : counter clockwise angle between E and R(towards second station) # # the leading -1 accounts fact that we rotate the coordinate system, # # not a vector # phi1 = - np.pi/180*(90-st[0].stats['sac']['az']) # # phi2 : counter clockwise angle between E and R(away from first station) # phi2 = - np.pi/180*(90-st[0].stats['sac']['baz']+180) # c1 = np.cos(phi1) # s1 = np.sin(phi1) # c2 = np.cos(phi2) # s2 = np.sin(phi2) # rtz = Stream() # RR = st[0].copy() # RR.data = c1*c2*st[0].data - c1*s2*st[1].data - s1*c2*st[3].data +\ # s1*s2*st[4].data # tcha = list(RR.stats['channel']) # tcha[2] = 'R' # tcha[6] = 'R' # RR.stats['channel'] = ''.join(tcha) # rtz.append(RR) # RT = st[0].copy() # RT.data = c1*s2*st[0].data + c1*c2*st[1].data - s1*s2*st[3].data -\ # s1*c2*st[4].data # tcha = list(RT.stats['channel']) # tcha[2] = 'R' # tcha[6] = 'T' # RT.stats['channel'] = ''.join(tcha) # rtz.append(RT) # RZ = st[0].copy() # RZ.data = c1*st[2].data - s1*st[5].data # tcha = list(RZ.stats['channel']) # tcha[2] = 'R' # tcha[6] = 'Z' # RZ.stats['channel'] = ''.join(tcha) # rtz.append(RZ) # TR = st[0].copy() # TR.data = s1*c2*st[0].data - s1*s2*st[1].data + c1*c2*st[3].data -\ # c1*s2*st[4].data # tcha = list(TR.stats['channel']) # tcha[2] = 'T' # tcha[6] = 'R' # TR.stats['channel'] = ''.join(tcha) # rtz.append(TR) # TT = st[0].copy() # TT.data = s1*s2*st[0].data + s1*c2*st[1].data + c1*s2*st[3].data +\ # c1*c2*st[4].data # tcha = list(TT.stats['channel']) # tcha[2] = 'T' # tcha[6] = 'T' # TT.stats['channel'] = ''.join(tcha) # rtz.append(TT) # TZ = st[0].copy() # TZ.data = s1*st[2].data + c1*st[5].data # tcha = list(TZ.stats['channel']) # tcha[2] = 'T' # tcha[6] = 'Z' # TZ.stats['channel'] = ''.join(tcha) # rtz.append(TZ) # ZR = st[0].copy() # ZR.data = c2*st[6].data - s2*st[7].data # tcha = list(ZR.stats['channel']) # tcha[2] = 'Z' # tcha[6] = 'R' # ZR.stats['channel'] = ''.join(tcha) # rtz.append(ZR) # ZT = st[0].copy() # ZT.data = s2*st[6].data + c2*st[7].tuple # ZT.stats['channel'] = ''.join(tcha) # rtz.append(ZT) # rtz.append(st[8].copy()) # return rtz
[docs]def sort_comb_name_alphabetically( network1: str, station1: str, network2: str, station2: str, location1: Optional[str] = '', location2: Optional[str] = '', channel1: Optional[str] = '', channel2: Optional[str] = '') -> Tuple[ list, list]: """ Returns the alphabetically sorted network and station codes from the two station. :param network1: network code of first station :type network1: str :param station1: station code of first station :type station1: str :param network2: Network code of second station :type network2: str :param station2: Station Code of second Station :type station2: str :return: A tuple containing the list of the network codes sorted and the list of the station codes sorted. :rtype: Tuple[ list, list] Examples -------- >>> net1 = 'IU' # Network Code of first station >>> stat1 = 'HRV' # Station Code of first station >>> net2 = 'XN' >>> stat2 = 'NEP06' >>> print(sort_comb_name_aphabetically( net1, stat1, net2, stat2)) (['IU', 'XN'], ['HRV', 'NEP06']) >>> print(sort_comb_name_aphabetically( net2, stat2, net1, stat1)) (['IU', 'XN'], ['HRV', 'NEP06']) >>> # Different combination >>> net1 = 'YP' # Network Code of first station >>> stat1 = 'AB3' # Station Code of first station >>> net2 = 'XN' >>> stat2 = 'NEP06' >>> print(sort_comb_name_aphabetically( net1, stat1, net2, stat2)) (['XN', 'YP'], ['NEP06', 'AB3']) >>> # Different combination >>> net1 = 'XN' # Network Code of first station >>> stat1 = 'NEP07' # Station Code of first station >>> net2 = 'XN' >>> stat2 = 'NEP06' >>> print(sort_comb_name_aphabetically( net1, stat1, net2, stat2)) (['XN', 'XN'], ['NEP06', 'NEP07']) """ if not all([isinstance(arg, str) for arg in [ network1, network2, station1, station2, location2, location1, channel1, channel2]]): raise TypeError('All arguments have to be strings.') sort1 = network1 + station1 + location1 + channel1 sort2 = network2 + station2 + location2 + channel2 sort = [sort1, sort2] sorted = sort.copy() sorted.sort() if sort == sorted: netcomb = [network1, network2] statcomb = [station1, station2] loccomb = [location1, location2] chacomb = [channel1, channel2] else: netcomb = [network2, network1] statcomb = [station2, station1] loccomb = [location2, location1] chacomb = [channel2, channel1] return netcomb, statcomb, loccomb, chacomb
[docs]def compute_network_station_combinations( netlist: list, statlist: list, method: str = 'betweenStations', combis: List[str] = None) -> Tuple[ list, list]: """ Return the network and station codes of the correlations for the provided lists of networks and stations and the queried combination method. :param netlist: List of network codes :type netlist: list :param statlist: List of Station Codes :type statlist: list :param method: The combination method to use. Has to be one of the following: `betweenStation`, `betweenComponents`, `autoComponents`, `allSimpleCombinations`, or `allCombinations`, defaults to 'betweenStations'. :type method: str, optional :param combis: List of desired station combinations. Given as [net0-net1.stat0-stat1]. Optional. :type combis: List[str] :raises ValueError: for unkown combination methods. :return: A tuple containing the list of the correlation network code and the list of the correlation station code. :rtype: Tuple[list, list] """ netcombs = [] statcombs = [] if method == 'betweenStations': for ii, (n, s) in enumerate(zip(netlist, statlist)): for jj in range(ii+1, len(netlist)): n2 = netlist[jj] s2 = statlist[jj] if n != n2 or s != s2: nc, sc, _, _ = sort_comb_name_alphabetically(n, s, n2, s2) # Check requested combinations if ( combis is not None and f'{nc[0]}-{nc[1]}.{sc[0]}-{sc[1]}' not in combis ): continue netcombs.append('%s-%s' % (nc[0], nc[1])) statcombs.append('%s-%s' % (sc[0], sc[1])) elif method == 'betweenComponents' or method == 'autoComponents': netcombs = [n+'-'+n for n in netlist] statcombs = [s+'-'+s for s in statlist] elif method == 'allSimpleCombinations': for ii, (n, s) in enumerate(zip(netlist, statlist)): for jj in range(ii, len(netlist)): n2 = netlist[jj] s2 = statlist[jj] nc, sc, _, _ = sort_comb_name_alphabetically(n, s, n2, s2) netcombs.append('%s-%s' % (nc[0], nc[1])) statcombs.append('%s-%s' % (sc[0], sc[1])) elif method == 'allCombinations': for n, s in zip(netlist, statlist): for n2, s2 in zip(netlist, statlist): nc, sc, _, _ = sort_comb_name_alphabetically(n, s, n2, s2) netcombs.append('%s-%s' % (nc[0], nc[1])) statcombs.append('%s-%s' % (sc[0], sc[1])) else: raise ValueError("Method has to be one of ('betweenStations', " "'betweenComponents', 'autoComponents', " "'allSimpleCombinations' or 'allCombinations').") return netcombs, statcombs
[docs]def preprocess_stream( st: Stream, store_client: Store_Client, startt: UTCDateTime, endt: UTCDateTime, taper_len: float, remove_response: bool, subdivision: dict, preProcessing: List[dict] = None, **kwargs) -> Stream: """ Does the preprocessing on a per stream basis. Most of the parameters can be fed in by using the "yaml" dict as kwargs. :param st: Input Stream to be processed :type st: :class:`obspy.core.stream.Stream` :param store_client: Store Client for the database :type store_client: :class:`~seismic.trace_data.waveform.Store_Client` :param inv: Station response, can be None if ``remove_response=False``. :type inv: Inventory or None :param startt: Starttime that the stream should be clipped / padded to. :type startt: :class:`obspy.UTCDateTime` :param endt: Endtime that the stream should be clipped / padded to. :type endt: :class:`obspy.UTCDateTime` :param taper_len: If the instrument response is removed, one might want to taper to mitigate the acausal effects of the deconvolution. This is the length of such a taper in seconds. :type taper_len: float :param remove_response: Should the instrument response be removed? :type remove_response: bool :param subdivision: Dictionary holding information about the correlation lenghts and increments. :type subdivision: dict :param preProcessing: List holding information about the different external preprocessing functions to be applied, defaults to None :type preProcessing: List[dict], optional :raises ValueError: For sampling rates higher than the stream's native sampling rate (upsampling is not permitted). :return: The preprocessed stream. :rtype: :class:`obspy.core.stream.Stream` """ if not st.count(): return st st = ppst.detrend_st(st, 'linear') # deal with overlaps # This should be a setting in the parameter file st = mu.gap_handler(st, 1, taper_len*4, taper_len) if not st.count(): # could happen after handling gaps return st # To deal with any nans/masks st = st.split() st = st.sort(keys=['starttime']) inv = store_client.inventory if remove_response: try: st.remove_response(taper=False, inventory=inv) except ValueError: print('Station response not found ... loading from remote.') # missing station response ninv = store_client.rclient.get_stations( network=st[0].stats.network, station=st[0].stats.station, channel='*', level='response') st.remove_response(taper=False, inventory=ninv) store_client._write_inventory(ninv) inv += ninv # Sometimes Z has reversed polarity if inv: try: mu.correct_polarity(st, inv) except Exception as e: print(e) mu.discard_short_traces(st, subdivision['corr_len']/20) if preProcessing: for procStep in preProcessing: if 'detrend_st' in procStep['function'] \ or 'cos_taper_st' in procStep['function']: warnings.warn( 'Tapering and Detrending are now always perfomed ' 'as part of the preprocessing. Ignoring parameter...', DeprecationWarning) continue func = func_from_str(procStep['function']) st = func(st, **procStep['args']) st.merge() st.trim(startt, endt, pad=True) mu.discard_short_traces(st, subdivision['corr_len']/20) return st
[docs]def generate_corr_inc( st: Stream, subdivision: dict, read_len: int, **kwargs) -> Iterator[Stream]: """ Subdivides the preprocessed streams into parts of equal length using the parameters ``cor_inc`` and ``cor_len`` in ``subdivision``. This function can be acessed by several processes in parallel :param st: The preprocessed input stream :type st: :class:`obspy.core.stream.Stream` :param subdivision: Dictionary holding the information about the correlation length and increment. :type subdivision: dict :param read_len: Length to be read from disk in seconds :type read_len: int :yield: Equal length windows, padded with nans / masked if data is missing. :rtype: Generator[Stream] """ try: # Second loop to return the time window in correlation length for ii, win0 in enumerate(st.slide( subdivision['corr_len']-st[0].stats.delta, subdivision['corr_inc'], include_partial_windows=True)): # We use trim so the windows have the right time and # are filled with masked arrays for places without values starttrim = st[0].stats.starttime + ii*subdivision['corr_inc'] endtrim = st[0].stats.starttime + ii*subdivision['corr_inc'] +\ subdivision['corr_len']-st[0].stats.delta win = win0.trim(starttrim, endtrim, pad=True) mu.get_valid_traces(win) yield win except IndexError: # processes with no data end up here win = Stream() # A little dirty, but it has to go through an equally long loop # else this will cause a deadlock for _ in range(int(np.ceil( read_len/subdivision['corr_inc']))): yield win